KERNEL
Kernel adalah suatu perangkat lunak yang menjadi bagian utama dari sebuah sistem operasi. Tugasnya melayani bermacam program aplikasi untuk mengakses perangkat keras komputer secara aman.
Karena akses terhadap perangkat keras terbatas, sedangkan ada lebih dari satu program yang harus dilayani dalam waktu yang bersamaan, maka kernel juga bertugas untuk mengatur kapan dan berapa lama suatu program dapat menggunakan satu bagian perangkat keras tersebut. Hal tersebut dinamakan sebagai multiplexing.
Akses kepada perangkat keras secara langsung merupakan masalah yang kompleks, oleh karena itu kernel biasanya mengimplementasikan sekumpulan abstraksi hardware. Abstraksi-abstraksi tersebut merupakan sebuah cara untuk menyembunyikan kompleksitas, dan memungkinkan akses kepada perangkat keras menjadi mudah dan seragam. Sehingga abstraksi pada akhirnya memudahkan pekerjaan programer.
Untuk menjalankan sebuah komputer kita tidak harus menggunakan kernel sistem operasi. Sebuah program dapat saja langsung diload dan dijalankan diatas mesin ‘telanjang’ komputer, yaitu bilamana pembuat program ingin melakukan pekerjaannya tanpa bantuan abstraksi perangkat keras atau bantuan sistem operasi. Teknik ini digunakan oleh komputer generasi awal, sehingga bila kita ingin berpindah dari satu program ke program lain, kita harus mereset dan meload kembali program-program tersebut.
Sebuah kernel sistem operasi tidak harus ada dan dibutuhkan untuk menjalankan sebuah komputer. Program dapat langsung dijalankan secara langsung di dalam sebuah mesin (contohnya adalah CMOS Setup) sehingga para pembuat program tersebut membuat program tanpa adanya dukungan dari sistem operasi atau hardware abstraction. Cara kerja seperti ini, adalah cara kerja yang digunakan pada zaman awal-awal dikembangkannya komputer (pada sekitar tahun 1950). Kerugian dari diterapkannya metode ini adalah pengguna harus melakukan reset ulang komputer tersebut dan memuatkan program lainnya untuk berpindah program, dari satu program ke program lainnya. Selanjutnya, para pembuat program tersebut membuat beberapa komponen program yang sengaja ditinggalkan di dalam komputer, seperti halnya loader atau debugger, atau dimuat dari dalam ROM (Read-Only Memory). Seiring dengan perkembangan zaman komputer yang mengalami akselerasi yang signifikan, metode ini selanjutnya membentuk apa yang disebut dengan kernel sistem operasi.
Selanjutnya, para arsitek sistem operasi mengembangkan kernel sistem operasi yang pada akhirnya terbagi menjadi empat bagian yang secara desain berbeda, sebagai berikut:
- Kernel monolitik. Kernel monolitik mengintegrasikan banyak fungsi di dalam kernel dan menyediakanlapisan abstraksi perangkat keras secara penuh terhadap perangkat keras yang berada di bawah sistem operasi.
- Mikrokernel. Mikrokernel menyediakan sedikit saja dari abstraksi perangkat keras dan menggunakan aplikasi yang berjalan di atasnya—yang disebut dengan server—untuk melakukan beberapa fungsionalitas lainnya.
- Kernel hibrida. Kernel hibrida adalah pendekatan desain microkernel yang dimodifikasi. Pada hybrid kernel, terdapat beberapa tambahan kode di dalam ruangan kernel untuk meningkatkan performanya.
- Exokernel. Exokernel menyediakan hardware abstraction secara minimal, sehingga program dapat mengakses hardware secara langsung. Dalam pendekatan desain exokernel, library yang dimiliki oleh sistem operasi dapat melakukan abstraksi yang mirip dengan abstraksi yang dilakukan dalam desainmonolithic kernel.
Kernel monolitik
Pendekatan kernel monolitik didefinisikan sebagai sebuah antarmuka virtual yang berada pada tingkat tinggi di atas perangkat keras, dengan sekumpulan primitif atau system call untuk mengimplementasikan layanan-layanan sistem operasi, seperti halnya manajemen proses, konkurensi (concurrency), dan manajemen memori pada modul-modul kernel yang berjalan di dalam mode supervisor.
Meskipun jika setiap modul memiliki layanan operasi-operasi tersebut terpisah dari modul utama, integrasi kode yang terjadi di dalam monolithic kernel sangatlah kuat, dan karena semua modul berjalan di dalamaddress space yang sama, sebuah bug dalam salah satu modul dapat merusak keseluruhan sistem. Akan tetapi, ketika implementasi dilakukan dengan benar, integrasi komponen internal yang sangat kuat tersebut justru akan mengizinkan fitur-fitur yang dimiliki oleh sistem yang berada di bawahnya dieksploitasi secara efektif, sehingga membuat sistem operasi dengan monolithic kernel sangatlah efisien—meskipun sangat sulit dalam pembuatannya.
Pada sistem operasi modern yang menggunakan monolithic kernel, seperti halnya Linux, FreeBSD, Solaris, dan Microsoft Windows, dapat memuat modul-modul yang dapat dieksekusi pada saat kernel tersebut dijalankan sehingga mengizinkan ekstensi terhadap kemampuan kernel sesuai kebutuhan, dan tentu saja dapat membantu menjaga agar kode yang berjalan di dalam ruangan kernel (kernel-space) seminim mungkin.
Di bawah ini ada beberapa sistem operasi yang menggunakan Monolithic kernel:
- Kernel sistem operasi UNIX tradisional, seperti halnya kernel dari sistem operasi UNIX keluarga BSD (NetBSD, BSD/I, FreeBSD, dan lainnya).
- Kernel sistem operasi GNU/Linux, Linux.
- Kernel sistem operasi Windows (versi 1.x hingga 4.x; kecuali Windows NT).
Mikrokernel
Pendekatan mikrokernel berisi sebuah abstraksi yang sederhana terhadap hardware, dengan sekumpulan primitif atau system call yang dapat digunakan untuk membuat sebuah sistem operasi agar dapat berjalan, dengan layanan-layanan seperti manajemen thread, komunikasi antar address space, dan komunikasi antar proses. Layanan-layanan lainnya, yang biasanya disediakan oleh kernel, seperti halnya dukungan jaringan, pada pendekatan microkernel justru diimplementasikan di dalam ruangan pengguna (user-space), dan disebut dengan server.
Server atau disebut sebagai peladen adalah sebuah program, seperti halnya program lainnya. Server dapat mengizinkan sistem operasi agar dapat dimodifikasi hanya dengan menjalankan program atau menghentikannya. Sebagai contoh, untuk sebuah mesin yang kecil tanpa dukungan jaringan, server jaringan (istilah server di sini tidak dimaksudkan sebagai komputer pusat pengatur jaringan) tidak perlu dijalankan. Pada sistem operasi tradisional yang menggunakan monolithic kernel, hal ini dapat mengakibatkan pengguna harus melakukan rekompilasi terhadap kernel, yang tentu saja sulit untuk dilakukan oleh pengguna biasa yang awam.
Dalam teorinya, sistem operasi yang menggunakan microkernel disebut jauh lebih stabil dibandingkan dengan monolithic kernel, karena sebuah server yang gagal bekerja, tidak akan menyebabkan kernelmenjadi tidak dapat berjalan, dan server tersebut akan dihentikan oleh kernel utama. Akan tetapi, dalam prakteknya, bagian dari system state dapat hilang oleh server yang gagal bekerja tersebut, dan biasanya untuk melakukan proses eksekusi aplikasi pun menjadi sulit, atau bahkan untuk menjalankan server-server lainnya.
Sistem operasi yang menggunakan microkernel umumnya secara dramatis memiliki kinerja di bawah kinerja sistem operasi yang menggunakan monolithic kernel. Hal ini disebabkan oleh adanya overhead yang terjadi akibat proses input/output dalam kernel yang ditujukan untuk mengganti konteks (context switch) untuk memindahkan data antara aplikasi dan server.
Beberapa sistem operasi yang menggunakan microkernel:
- IBM AIX, sebuah versi UNIX dari IBM
- Amoeba, sebuah kernel yang dikembangkan untuk tujuan edukasi
- Kernel Mach, yang digunakan di dalam sistem operasi GNU/Hurd, NexTSTEP, OPENSTEP, dan Mac OS/X
- Minix, kernel yang dikembangkan oleh Andrew Tanenbaum untuk tujuan edukasi
- Symbian OS, sebuah sistem operasi yang populer digunakan pada hand phone, handheld device, embedded device, dan PDA Phone.
Kernel hibrida
Kernel hibrida aslinya adalah mikrokernel yang memiliki kode yang tidak menunjukkan bahwa kernel tersebut adalah mikrokernel di dalam ruangan kernel-nya. Kode-kode tersebut ditaruh di dalam ruangankernel agar dapat dieksekusi lebih cepat dibandingkan jika ditaruh di dalam ruangan user. Hal ini dilakukan oleh para arsitek sistem operasi sebagai solusi awal terhadap masalah yang terjadi di dalam mikrokernel: kinerja.
Beberapa orang banyak yang bingung dalam membedakan antara kernel hibrida dan kernel monolitik yang dapat memuat modul kernel setelah proses booting, dan cenderung menyamakannya. Antara kernel hibrida dan kernel monolitik jelas berbeda. Kernel hibrida berarti bahwa konsep yang digunakannya diturunkan dari konsep desain kernel monolitik dan mikrokernel. Kernel hibrida juga memiliki secara spesifik memiliki teknologi pertukaran pesan (message passing) yang digunakan dalam mikrokernel, dan juga dapat memindahkan beberapa kode yang seharusnya bukan kode kernel ke dalam ruangan kode kernel karena alasan kinerja.
Di bawah ini adalah beberapa sistem operasi yang menggunakan kernel hibrida:
- BeOS, sebuah sistem operasi yang memiliki kinerja tinggi untuk aplikasi multimedia.
- Novell NetWare, sebuah sistem operasi yang pernah populer sebagai sistem operasi jaringan berbasis IBM PC dan kompatibelnya.
- Microsoft Windows NT (dan semua keturunannya).
Exokernel
Sebenarnya, Exokernel bukanlah pendekatan kernel sistem operasi yang umum—seperti halnya microkernel atau monolithic kernel yang populer, melainkan sebuah struktur sistem operasi yang disusun secara vertikal.
Ide di balik exokernel adalah untuk memaksa abstraksi yang dilakukan oleh developer sesedikit mungkin, sehingga membuat mereka dapat memiliki banyak keputusan tentang abstraksi hardware. Exokernel biasanya berbentuk sangat kecil, karena fungsionalitas yang dimilikinya hanya terbatas pada proteksi dan penggandaan sumber daya.
Kernel-kernel klasik yang populer seperti halnya monolithic dan microkernel melakukan abstraksi terhadap hardware dengan menyembunyikan semua sumber daya yang berada di bawah hardware abstraction layer atau di balik driver untuk hardware. Sebagai contoh, jika sistem operasi klasik yang berbasis kedua kernel telah mengalokasikan sebuah lokasi memori untuk sebuah hardware tertentu, maka hardware lainnya tidak akan dapat menggunakan lokasi memori tersebut kembali.
Exokernel mengizinkan akses terhadap hardware secara langsung pada tingkat yang rendah: aplikasi dan abstraksi dapat melakukan request sebuah alamat memori spesifik baik itu berupa lokasi alamat physical memory dan blok di dalam hard disk. Tugas kernel hanya memastikan bahwa sumber daya yang diminta itu sedang berada dalam keadaan kosong—belum digunakan oleh yang lainnya—dan tentu saja mengizinkan aplikasi untuk mengakses sumber daya tersebut. Akses hardware pada tingkat rendah ini mengizinkan para programmer untuk mengimplementasikan sebuah abstraksi yang dikhususkan untuk sebuah aplikasi tertentu, dan tentu saja mengeluarkan sesuatu yang tidak perlu dari kernel agar membuat kernel lebih kecil, dan tentu saja meningkatkan performa.
Exokernel biasanya menggunakan library yang disebut dengan libOS untuk melakukan abstraksi. libOS memungkinkan para pembuat aplikasi untuk menulis abstraksi yang berada pada level yang lebih tinggi, seperti halnya abstraksi yang dilakukan pada sistem operasi tradisional, dengan menggunakan cara-cara yang lebih fleksibel, karena aplikasi mungkin memiliki abstraksinya masing-masing. Secara teori, sebuah sistem operasi berbasis Exokernel dapat membuat sistem operasi yang berbeda seperti halnya Linux, UNIX, dan Windows dapat berjalan di atas sistem operasi tersebut.
Konsep Dasar Sistem Operasi
Batch System
Batch system adalah dimana job-job yang mirip dikumpulkan dan dijalankan secara kelompok kemudian setelah kelompok yang dijalankan tadi selesai maka secara otomatis kelompok lain dijalankan. jadi dengan kata lain adalah teknologi proses komputer dari generasi ke-2. yang jika suatu tugas sedang dikerjakan pada 1 rangkaian, akan di eksekusi secara berurutan. Pada komputer generasi ke-2 sistem komputer nya maasih blum dilengkapi oleh sebuah sistem operasi. But, dalan beberapa fungsi sistem operasi, seperti os yang tengah berkembang pada jaman sekarang ini. Contohnya adlah FMS ( Fortarn Monitoring System ) dan IBSYS.
Multiprograming System
Multi programming system adalah dimana job-job disimpan di main memory di waktu yang sama dan CPU dipergunakan bergantian. Hal ini membutuhkan beberapa kemampuan tambahan yaitu : Penyediaan I/O routine oleh sistem, Pengaturan memori untuk mengalokasikan memory pada beberapa Job, penjadwalan CPU untuk memilih job mana yang akan dijalankan, serta pengalokasian hardware lain.
Multiprogramming berarti meletakkan lebih dari sebuah program di main memory. Cara ini dilakukan dengan membagi main memory menjadi beberapa partisi. Tiap partisi akan menyimpan sebuah program. Foreground partitions akan berisi program dengan prioritas yang lebih tinggi sedang background partitions akan berisi program dengan prioritas yang lebih rendah.
Time Sharing System
Time-sharing adalah metode dimana banyak pengguna dapat melakukan processing dalam satu komputer.
Christopher Strachy pada tahun 1959 telah memberikan ide mengenai pembagian waktu yang dilakukan oleh CPU. Baru pada tahun 1961, pertama kali sistem yang benar-benar berbentuk time sharing system dilakukan di MIT (Massachusetts Institute of Technology) dan diberi nama CTSS (Compatible Time Sharing System) yang bisa melayani sebanyak 8 pemakai dengan menggunakan omputer IBM 7090. Pada TSS tiap-tiap User dilayani oleh komputer dengan bergiliran dalam waktu yang sangat cepat. Sehingga tiap pemakai komputer tidak merasa bahwa komputer melayani beberapa pemakai sekaligus secara bergiliran.
Salah satu penggunaan time sharing system ini dapat dilihat dalam pemakaian suatu teller terminal pada suatu bank. Bilamana seorang nasabah datang ke bank tersebut untuk menyimpan uang atau mengambil uang, maka buku tabungannya ditempatkan pada terminal. Dan oleh operator pada terminal tersebut dicatat melalui papan ketik (keyboard), kemudian data tersebut dikirim secara langsung ke pusat komputer, memprosesnya, menghitung jumlah uang seperti yang dikehendaki, dan mencetaknya pada buku tabungan tersebut untuk transaksi yang baru saja dilakukan.
Multiprocessing System
Multi processing system atau Multitasking adalah adalah pemrosesan beberapa tugas pada waktu yang bersamaan.
Dewasa ini, penggunaan time-sharing jarang digunakan, dan digantikan dengan multitasking.
Contoh sistem operasi jenis ini antara lain adalah linux. Linux adalah sistem operasi yang multitasking dan multiuser seperti kebanyakan SO yang ada pada saat ini. Multitasking pada linux artinya linux bisa atau mampu menjalankan beberapa proses dalam waktu yang bersamaan.
Seperti contoh pada saat kita menjalan kan aplikasi web browser kita juga bisa menjalankan aplikasi kompresi file. Sedangkan multiuser pada linux adalah user bisa login ke dalam sistem secara bersamaan, dengan artinya user bisa menggunakan satu sistem secara bersamaan dalam satu waktu. Multitasking dan multiuser pada sistem operasi merupakan satu keharusan dalam masa ini.
Real Time System
Real time system disebut juga dengan Sistem waktu nyata. Sistem yang harus menghasilkan respon yang tepat dalam batas waktu yang telah ditentukan. Jika respon komputer melewati batas waktu tersebut, maka terjadi degradasi performansi atau kegagalan sistem. Sebuah Real time system adalah sistem yang kebenarannya secara logis didasarkan pada kebenaran hasil-hasil keluaran sistem dan ketepatan waktu hasil-hasil tersebut dikeluarkan. Aplikasi penggunaan sistem seperti ini adalah untuk memantau dan mengontrol peralatan seperti motor, assembly line, teleskop, atau instrumen lainnya. Peralatan telekomunikasi dan jaringan komputer biasanya juga membutuhkan pengendalian secara Real time.
Berdasarkan batasan waktu yang dimilikinya, Real time system ini dibagi atas:
1. Hard Real time
2. Soft Real time
3. Firm Real time
Komponen dari Real time system ini adalah:
1. Perangkat keras,
2. Sistem Operasi Real time,
3. Bahasa Pemrograman Real time,
4. Sistem Komunikasi.
Sistem Operasi Terpusat dan Terdistribusi
Sistem informasi terpusat merupakan suatu sistem infromasi yang penempatan data dan aplikasi untuk mengakses data tersebut menjadi satu tempat atau satu Server.
Sistem informasi terpusat ini biasanya dirancang dan dibangun dengan menggunankan web Server, data base Server dan bahasa pemrograman yang dapat diinterpretasikan oleh browser (alat yang digunakan untuk mengakses informasi internet menggunakan port 80). Seperti terlihat pada gambar. Dalam gambar tersebut tampak bahwa peralatan tambahan yaitu printer dan scanner terhubung langsung ke Server sehingga setiap komputer klien yang akan melakukan pencetakan dokumen dapat melakukan pencetakan jarak jauh, begitu pula untuk scanner.
Sistem informasi terdistribusi dibangun dengan cara memisahkan secara fisik untuk setiap fungsi dan tugas sebuah komputer dalam ruang lingkup jaringan komputer. Pemisahan antara aplikasi Server dengan data base Server serta komputer klien yang terhubung dalam jaringan area local terbatas atau yang dikenal dengan LAN (Local Area Network) diharapkan dapat mengoptimalkan kinerja dari setiap komputer yang mengakses informasi.